- Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

In this Python Beginner Tutorial, we will begin learning about dictionaries. Dictionaries allow us to work with key-value pairs in Python. We will go over dictionary methods, how to add and remove values, and also how to loop through the key-value pairs. Let's get started.

The code from this vid...
In this Python Beginner Tutorial, we will begin learning about dictionaries. Dictionaries allow us to work with key-value pairs in Python. We will go over dictionary methods, how to add and remove values, and also how to loop through the key-value pairs. Let's get started.

The code from this video can be found at:
https://github.com/CoreyMSchafer/code_snippets/tree/master/Python-Dicts

Watch the full Python Beginner Series here:
https://www.youtube.com/playlist?list=PL-osiE80TeTskrapNbzXhwoFUiLCjGgY7


✅ Support My Channel Through Patreon:
https://www.patreon.com/coreyms

✅ Become a Channel Member:
https://www.youtube.com/channel/UCCezIgC97PvUuR4_gbFUs5g/join

✅ One-Time Contribution Through PayPal:
https://goo.gl/649HFY

✅ Cryptocurrency Donations:
Bitcoin Wallet - 3MPH8oY2EAgbLVy7RBMinwcBntggi7qeG3
Ethereum Wallet - 0x151649418616068fB46C3598083817101d3bCD33
Litecoin Wallet - MPvEBY5fxGkmPQgocfJbxP6EmTo5UUXMot

✅ Corey's Public Amazon Wishlist
http://a.co/inIyro1

✅ Equipment I Use and Books I Recommend:
https://www.amazon.com/shop/coreyschafer

▶️ You Can Find Me On:
My Website - http://coreyms.com/
My Second Channel - https://www.youtube.com/c/coreymschafer
Facebook - https://www.facebook.com/CoreyMSchafer
Twitter - https://twitter.com/CoreyMSchafer
Instagram - https://www.instagram.com/coreymschafer/

#Python

#Python #Python Dictionary #Python dict #Hashmap #Associative Array #Key-Value Pairs #Python For Beginners #Absolute Beginners #Python for Absolute Beginners #Python Basics #Python Data Types #Getting Started with Python #Python 3.6 #Python 36 #Python 3 #python dictionary tutorial #python #dictionaries in python #python dictionary #python tutorial #python 3
bro i love your content very much thanks for your all effort you have put to make this tutorial love from nepal - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

bro i love your content very much thanks for your all effort you have put to make this tutorial love from nepal

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:00:00 - 00:09:59
nothing - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

nothing

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:00:00 - 00:09:59
Hey is there a way to select an index and have just one part printed in a library? similar to print(list[]) with lists?? - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

Hey is there a way to select an index and have just one part printed in a library? similar to print(list[]) with lists??

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:00:02 - 00:09:59
– Terminology - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– Terminology

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:00:07 - 00:00:14
– Key/Value pairs definition - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– Key/Value pairs definition

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:00:14 - 00:00:37
- First example (Student using a dictionary) - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

- First example (Student using a dictionary)

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:00:37 - 00:00:45
– { }, Dict notation, curly braces, - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– { }, Dict notation, curly braces,

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:00:45 - 00:00:50
– adding elements - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– adding elements

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:00:50 - 00:01:32
– [ ] Square bracket access of the dict - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– [ ] Square bracket access of the dict

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:01:32 - 00:02:04
– Dict items can be many things, they’re not bound to one “type” - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– Dict items can be many things, they’re not bound to one “type”

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:02:04 - 00:02:14
What if at , we want just one of the courses to be printed, like just Math? - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

What if at , we want just one of the courses to be printed, like just Math?

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:02:12 - 00:09:59
– Keys can be any immutable data type - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– Keys can be any immutable data type

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:02:14 - 00:02:24
Hello Corey, and thank you for your awesome tutorials. At  of this video did you said mutable or immutable data types? Because immutable sounds weird to me. It means data that can not be changed, but the strings and lists that we use here are muttable data right? Sorry for my noob questions but i just started learnig how to code! Thanks in advance! :) - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

Hello Corey, and thank you for your awesome tutorials. At of this video did you said mutable or immutable data types? Because immutable sounds weird to me. It means data that can not be changed, but the strings and lists that we use here are muttable data right? Sorry for my noob questions but i just started learnig how to code! Thanks in advance! :)

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:02:18 - 00:09:59
– Example of an Integer being the key - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– Example of an Integer being the key

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:02:24 - 00:02:44
– Accessing a key that does not exist - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– Accessing a key that does not exist

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:02:44 - 00:03:00
– Alternative to “throwing an error” if a key does not exist - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– Alternative to “throwing an error” if a key does not exist

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:03:00 - 00:03:05
– Sometimes you will want to return None or a default value if key does not exist - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– Sometimes you will want to return None or a default value if key does not exist

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:03:05 - 00:03:09
- .get( ) access of the dict - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

- .get( ) access of the dict

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:03:09 - 00:03:30
– accessing a key that does not exist with the .get method as opposed to [ ] square bracket access - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– accessing a key that does not exist with the .get method as opposed to [ ] square bracket access

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:03:30 - 00:03:40
– Specifying a default value for keys that do not exist - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– Specifying a default value for keys that do not exist

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:03:40 - 00:04:01
– Adding a new entry to dictionary - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– Adding a new entry to dictionary

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:04:01 - 00:04:30
– Changing/updating values via key access - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– Changing/updating values via key access

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:04:30 - 00:05:02
how do you do add a hashtag like that? - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

how do you do add a hashtag like that?

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:04:48 - 00:09:59
– Changing/updating values via .update() method - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– Changing/updating values via .update() method

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:05:02 - 00:05:21
- .update() takes in a dict as an argument - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

- .update() takes in a dict as an argument

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:05:21 - 00:05:57
you can also do it lik this: student['name'], student['phone'] = 'jane', '555-5555' - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

you can also do it lik this: student['name'], student['phone'] = 'jane', '555-5555'

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:05:50 - 00:09:59
– Deleting a specific key and its value - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– Deleting a specific key and its value

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:05:57 - 00:06:01
– Option 1 for deleting a key and value: del keyword - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– Option 1 for deleting a key and value: del keyword

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:06:01 - 00:06:26
@ if i want to update (add) to course at the same time than how to do it ?? - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

@ if i want to update (add) to course at the same time than how to do it ??

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:06:04 - 00:09:59
– Option 2 for removing a key and value: .pop() method - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– Option 2 for removing a key and value: .pop() method

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:06:26 - 00:06:30
Thanks for the video tutorials. I love it. I have question about pop method  . Can we use pop() without storing to one variable or we have to use pop() with variable? Kinda confusing for me. Thank you, again. - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

Thanks for the video tutorials. I love it. I have question about pop method . Can we use pop() without storing to one variable or we have to use pop() with variable? Kinda confusing for me. Thank you, again.

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:06:28 - 00:09:59
– Remember the .pop() method not only removes the item put pops it off or returns it to you - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– Remember the .pop() method not only removes the item put pops it off or returns it to you

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:06:30 - 00:06:35
– Therefore you can recover the popped item with a variable assignment - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– Therefore you can recover the popped item with a variable assignment

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:06:35 - 00:07:07
– How to loop through all the keys and values - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– How to loop through all the keys and values

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:07:07 - 00:07:13
– Finding out the number of keys in dict with len() function - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– Finding out the number of keys in dict with len() function

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:07:13 - 00:07:30
– Print all keys with .keys() method - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– Print all keys with .keys() method

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:07:30 - 00:07:39
– Print all values with .values() method - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– Print all values with .values() method

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:07:39 - 00:07:47
– Print both keys and values with .items() method - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– Print both keys and values with .items() method

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:07:47 - 00:08:07
– Looping is slightly different then lists because dicts are concerned with pairs (Key : Value) - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– Looping is slightly different then lists because dicts are concerned with pairs (Key : Value)

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:08:07 - 00:08:33
– How to loop through keys AND values - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

– How to loop through keys AND values

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:08:33 - 00:09:59
.  I was using this video to find how to list the Key's in a dictionary, and at  you show an example like this :for key in student.items():print(key)The result is :('name', 'John')('age', 25)('courses', ['Math', 'CompSci']) - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

. I was using this video to find how to list the Key's in a dictionary, and at you show an example like this :for key in student.items():print(key)The result is :('name', 'John')('age', 25)('courses', ['Math', 'CompSci'])

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:08:40 - 00:09:59
like we want to enumerate the key and values buy using "enumerate" argument and   "item" argument at same time ? how can we do that ?BTW you are great ! - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

like we want to enumerate the key and values buy using "enumerate" argument and "item" argument at same time ? how can we do that ?BTW you are great !

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:08:42 - 00:09:59
It’s still the same. Items() will give you the key and values. Watch at  where I add values into the iteration - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

It’s still the same. Items() will give you the key and values. Watch at where I add values into the iteration

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:08:50 - 00:09:59
I am trying to run the same code at  but I am getting indentation error saying expected an indented block. Why? - Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs

I am trying to run the same code at but I am getting indentation error saying expected an indented block. Why?

Python Tutorial for Beginners 5: Dictionaries - Working with Key-Value Pairs
2017年05月18日
00:08:58 - 00:09:59
Corey Schafer

Corey Schafer

🎉 990,000 人達成! 🎉

【予測】100万人まであと10日(2022年10月17日)

チャンネル登録 RSS
Welcome to my Channel. This channel is focused on creating tutorials and walkthroughs for software developers, programmers, and engineers. We cover topics for all different skill levels, so whether you are a beginner or have many years of experience, this channel will have something for you.

We'...
Welcome to my Channel. This channel is focused on creating tutorials and walkthroughs for software developers, programmers, and engineers. We cover topics for all different skill levels, so whether you are a beginner or have many years of experience, this channel will have something for you.

We've already released a wide variety of videos on topics that include: Python, Git, Development Environments, Terminal Commands, SQL, Programming Terms, JavaScript, Computer Science Fundamentals, and plenty of other tips and tricks which will help you in your career.


If you enjoy these videos and would like to support my channel, I would greatly appreciate any assistance through my Patreon account:
https://www.patreon.com/coreyms


You can find me on:
My website - http://coreyms.com/
Facebook - https://www.facebook.com/CoreyMSchafer
Twitter - https://twitter.com/CoreyMSchafer
Google Plus - https://plus.google.com/+CoreySchafer44/posts
Tumblr - https://www.tumblr.com/blog/mycms

Timetable

動画タイムテーブル

動画数:127件

A OAuth Django video would be awesome!(Applicable to all sorts of OAuth situations, not just the YouTube API.) - Python YouTube API Tutorial: Using OAuth to Access User Accounts

A OAuth Django video would be awesome!(Applicable to all sorts of OAuth situations, not just the YouTube API.)

Python YouTube API Tutorial: Using OAuth to Access User Accounts
2020年09月10日
00:07:58 - 00:43:21
At  you move the file and see some blurred miniature version of your open folders in the dock. How did you enable that? - Python YouTube API Tutorial: Using OAuth to Access User Accounts

At you move the file and see some blurred miniature version of your open folders in the dock. How did you enable that?

Python YouTube API Tutorial: Using OAuth to Access User Accounts
2020年09月10日
00:09:58 - 00:43:21
In case you are getting Error 403 ("access_denied The developer hasn’t given you access to this app") go to the OAuth consent screen and under Test Users add your email by clicking on Add Users.  You should be able to grant access after you've added User. - Python YouTube API Tutorial: Using OAuth to Access User Accounts

In case you are getting Error 403 ("access_denied The developer hasn’t given you access to this app") go to the OAuth consent screen and under Test Users add your email by clicking on Add Users. You should be able to grant access after you've added User.

Python YouTube API Tutorial: Using OAuth to Access User Accounts
2020年09月10日
00:19:36 - 00:43:21
@corey  So why did you add the join function here, when appending the video id to the list its already a list and its working for me when I pass the vid_ids directly - Python YouTube API Tutorial: Calculating the Duration of a Playlist

@corey So why did you add the join function here, when appending the video id to the list its already a list and its working for me when I pass the vid_ids directly

Python YouTube API Tutorial: Calculating the Duration of a Playlist
2020年06月11日
00:11:24 - 00:37:38
TypeError: expected string or bytes-like object, I am taking this error in , any idea? - Python YouTube API Tutorial: Calculating the Duration of a Playlist

TypeError: expected string or bytes-like object, I am taking this error in , any idea?

Python YouTube API Tutorial: Calculating the Duration of a Playlist
2020年06月11日
00:18:50 - 00:37:38
(I love that "Whoops that went too well"-moment at  :D) - Python Tutorial: Real World Example - Using Patreon API and Pillow to Automate Image Creation

(I love that "Whoops that went too well"-moment at :D)

Python Tutorial: Real World Example - Using Patreon API and Pillow to Automate Image Creation
2020年05月11日
00:35:19 - 00:52:33
Read CSV - - Python Pandas Tutorial (Part 11): Reading/Writing Data to Different Sources - Excel, JSON, SQL, Etc

Read CSV -

Python Pandas Tutorial (Part 11): Reading/Writing Data to Different Sources - Excel, JSON, SQL, Etc
2020年04月02日
00:00:56 - 00:03:20
Write CSV - - Python Pandas Tutorial (Part 11): Reading/Writing Data to Different Sources - Excel, JSON, SQL, Etc

Write CSV -

Python Pandas Tutorial (Part 11): Reading/Writing Data to Different Sources - Excel, JSON, SQL, Etc
2020年04月02日
00:03:20 - 00:04:40
Write TSV - - Python Pandas Tutorial (Part 11): Reading/Writing Data to Different Sources - Excel, JSON, SQL, Etc

Write TSV -

Python Pandas Tutorial (Part 11): Reading/Writing Data to Different Sources - Excel, JSON, SQL, Etc
2020年04月02日
00:04:40 - 00:06:00
Read TSV - - Python Pandas Tutorial (Part 11): Reading/Writing Data to Different Sources - Excel, JSON, SQL, Etc

Read TSV -

Python Pandas Tutorial (Part 11): Reading/Writing Data to Different Sources - Excel, JSON, SQL, Etc
2020年04月02日
00:06:00 - 00:06:15
Write Excel - - Python Pandas Tutorial (Part 11): Reading/Writing Data to Different Sources - Excel, JSON, SQL, Etc

Write Excel -

Python Pandas Tutorial (Part 11): Reading/Writing Data to Different Sources - Excel, JSON, SQL, Etc
2020年04月02日
00:06:15 - 00:10:42
Read Excel -  (Start at 6:15 to see installed packages) - Python Pandas Tutorial (Part 11): Reading/Writing Data to Different Sources - Excel, JSON, SQL, Etc

Read Excel - (Start at 6:15 to see installed packages)

Python Pandas Tutorial (Part 11): Reading/Writing Data to Different Sources - Excel, JSON, SQL, Etc
2020年04月02日
00:10:42 - 00:12:18
Write JSON - - Python Pandas Tutorial (Part 11): Reading/Writing Data to Different Sources - Excel, JSON, SQL, Etc

Write JSON -

Python Pandas Tutorial (Part 11): Reading/Writing Data to Different Sources - Excel, JSON, SQL, Etc
2020年04月02日
00:12:18 - 00:15:41
Read JSON - - Python Pandas Tutorial (Part 11): Reading/Writing Data to Different Sources - Excel, JSON, SQL, Etc

Read JSON -

Python Pandas Tutorial (Part 11): Reading/Writing Data to Different Sources - Excel, JSON, SQL, Etc
2020年04月02日
00:15:41 - 00:16:59
Write SQL - - Python Pandas Tutorial (Part 11): Reading/Writing Data to Different Sources - Excel, JSON, SQL, Etc

Write SQL -

Python Pandas Tutorial (Part 11): Reading/Writing Data to Different Sources - Excel, JSON, SQL, Etc
2020年04月02日
00:16:59 - 00:24:57
# Just in case:If you are using sqlite3 instead of sqlalchemy, you have to use SQL string not the table name: - Python Pandas Tutorial (Part 11): Reading/Writing Data to Different Sources - Excel, JSON, SQL, Etc

# Just in case:If you are using sqlite3 instead of sqlalchemy, you have to use SQL string not the table name:

Python Pandas Tutorial (Part 11): Reading/Writing Data to Different Sources - Excel, JSON, SQL, Etc
2020年04月02日
00:24:57 - 00:32:45
Read SQL -  (Start at 16:59 to see installed packages) - Python Pandas Tutorial (Part 11): Reading/Writing Data to Different Sources - Excel, JSON, SQL, Etc

Read SQL - (Start at 16:59 to see installed packages)

Python Pandas Tutorial (Part 11): Reading/Writing Data to Different Sources - Excel, JSON, SQL, Etc
2020年04月02日
00:24:57 - 00:32:45
.000 +0200 and i used format='%Y-%m-%d %H:%M:%S.%f %z'  It say format does not match. Where did I go wrong. What will the correct format be? Anyone? - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

.000 +0200 and i used format='%Y-%m-%d %H:%M:%S.%f %z' It say format does not match. Where did I go wrong. What will the correct format be? Anyone?

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:00:00 - 00:35:41
for the resampling of the whole DataFrame, say, if I want to get the open price at  for the 'open price' of the day and the close price at 23:00:00 for the 'close price' of the day, what function am I supposed to use here?Thank you ! - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

for the resampling of the whole DataFrame, say, if I want to get the open price at for the 'open price' of the day and the close price at 23:00:00 for the 'close price' of the day, what function am I supposed to use here?Thank you !

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:00:00 - 00:35:41
, can you please tell me how to convert this format to standard date and time format ?   I try this df['Datetime'] = pd.to_datetime(df['Datetime'], format='%m %d %Y %H:%M'), but it didn't work....  please help. - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

, can you please tell me how to convert this format to standard date and time format ? I try this df['Datetime'] = pd.to_datetime(df['Datetime'], format='%m %d %Y %H:%M'), but it didn't work.... please help.

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:00:02 - 00:35:41
convert to datetime using to_datetime - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

convert to datetime using to_datetime

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:03:50 - 00:07:45
Firstly at  , we converted all the values of the Series to datetime type from String type using:df[‘Date’] = pd.to_datetime(df[‘Date’], format = ‘%Y-%m-%d %I-%p’) - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

Firstly at , we converted all the values of the Series to datetime type from String type using:df[‘Date’] = pd.to_datetime(df[‘Date’], format = ‘%Y-%m-%d %I-%p’)

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:06:36 - 00:10:24
parse dates while loading data from csv - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

parse dates while loading data from csv

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:07:45 - 00:11:20
too complicated - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

too complicated

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:08:50 - 00:35:41
but when doing the same thing while loading csv ,we used a lengthier approach of using a lambda and assigning it to date_parser argument.So my doubt is whether while following the later approach, do we basically apply a function(lambda in this case) to a column('Date') so that the function is applied to each value in that column and it converts each value(String) by calling strptime() ?If so, can we assume to_datetime() method converts a whole Series to datetime type while the later approach converts each value of a Series to datetime object?Is there any way we can replicate the former way while loading the csv file? That look minimal and easy.Thanks in advence - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

but when doing the same thing while loading csv ,we used a lengthier approach of using a lambda and assigning it to date_parser argument.So my doubt is whether while following the later approach, do we basically apply a function(lambda in this case) to a column('Date') so that the function is applied to each value in that column and it converts each value(String) by calling strptime() ?If so, can we assume to_datetime() method converts a whole Series to datetime type while the later approach converts each value of a Series to datetime object?Is there any way we can replicate the former way while loading the csv file? That look minimal and easy.Thanks in advence

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:10:24 - 00:35:41
using day_name on whole series using dt class - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

using day_name on whole series using dt class

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:11:20 - 00:12:20
create column of dayname - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

create column of dayname

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:12:20 - 00:13:20
min and max methods on datetime series - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

min and max methods on datetime series

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:13:20 - 00:15:00
filtering by dates as string - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

filtering by dates as string

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:15:00 - 00:17:20
filter by to_datetime - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

filter by to_datetime

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:17:20 - 00:18:40
At  time, where you explain filtering the data on basis of start and end date, I tried doing that without changing the date string to datetime format of pandas and it still worked. What you suggested is this "filt=(df['Date']>=pandas.to_datetime('2019-01-01')) & (df['Date']<pandas.to_datetime('2020-01-01'))df.loc[filt]" what I did is filt=(df['Date']>='2019-01-01') & (df['Date']<'2020-01-01')df.loc[filt]. Could you please suggest if the way I did is wrong or will give me the correct results always or not? - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

At time, where you explain filtering the data on basis of start and end date, I tried doing that without changing the date string to datetime format of pandas and it still worked. What you suggested is this "filt=(df['Date']>=pandas.to_datetime('2019-01-01')) & (df['Date']<pandas.to_datetime('2020-01-01'))df.loc[filt]" what I did is filt=(df['Date']>='2019-01-01') & (df['Date']<'2020-01-01')df.loc[filt]. Could you please suggest if the way I did is wrong or will give me the correct results always or not?

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:18:20 - 00:35:41
set date as index - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

set date as index

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:18:40 - 00:19:21
filter data by just passing the date in brackets - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

filter data by just passing the date in brackets

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:19:21 - 00:20:05
Your tutorials are the bests on the web. Before I can do the index filter ( in the video), I had to sort the dataframe by index(df = df.sort_index()) I don't know why but it was given me an error (AssertionError: <class 'numpy.ndarray'>).Thanks for sharing. - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

Your tutorials are the bests on the web. Before I can do the index filter ( in the video), I had to sort the dataframe by index(df = df.sort_index()) I don't know why but it was given me an error (AssertionError: <class 'numpy.ndarray'>).Thanks for sharing.

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:19:35 - 00:35:41
@ df['2019'] does not work for me. Can anyone help me with this issue? ok nevermind i got it figured out. df.index = pd.to_datetime(df.index) then sort it by index if anyone run into the same issueGreat video btw! - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

@ df['2019'] does not work for me. Can anyone help me with this issue? ok nevermind i got it figured out. df.index = pd.to_datetime(df.index) then sort it by index if anyone run into the same issueGreat video btw!

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:20:00 - 00:35:41
using a slice to get specific dates data - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

using a slice to get specific dates data

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:20:05 - 00:21:00
Hi all, In minute  when filtering df['2020-01':'2020-02] I get an empty dataframe as result. However, if I change the order of the filter df['2020-02':'2020-01] it works. Is there something wrong with this? I didn't sort in any way different than Corey's video but it seems that I need to filter following the pattern of the index to get the correct result. Any comments? Thanks! (Ricardo from Argentina) - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

Hi all, In minute when filtering df['2020-01':'2020-02] I get an empty dataframe as result. However, if I change the order of the filter df['2020-02':'2020-01] it works. Is there something wrong with this? I didn't sort in any way different than Corey's video but it seems that I need to filter following the pattern of the index to get the correct result. Any comments? Thanks! (Ricardo from Argentina)

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:20:30 - 00:35:41
calculating average of a slice(timeframe) - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

calculating average of a slice(timeframe)

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:21:00 - 00:22:05
getting max value of a column on a given day - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

getting max value of a column on a given day

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:22:05 - 00:23:50
df['only_time'] = ''how can i do it without external loop code, because loop taking long time to apply.Thanks for your help. - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

df['only_time'] = ''how can i do it without external loop code, because loop taking long time to apply.Thanks for your help.

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:23:00 - 00:35:41
resampling(breaking down by days) a whole column into a new variable - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

resampling(breaking down by days) a whole column into a new variable

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:23:50 - 00:27:00
plotting with matplotlib in pandas - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

plotting with matplotlib in pandas

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:27:00 - 00:28:28
resampling df with multiple columns - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

resampling df with multiple columns

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:28:28 - 00:30:55
using agg to apply different function on different columns while resampling - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

using agg to apply different function on different columns while resampling

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:30:55 - 00:35:41
You could have also used method 'first' for open price within agg functionThanks a lot for these videos. - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

You could have also used method 'first' for open price within agg functionThanks a lot for these videos.

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:32:28 - 00:35:41
I got this error 'DataFrame' object has no attribute 'resamlpe' - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

I got this error 'DataFrame' object has no attribute 'resamlpe'

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:32:35 - 00:35:41
did the plotting series of tutorials ever come? - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

did the plotting series of tutorials ever come?

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:32:58 - 00:35:41
the date is same but the time is changing. when i am plotting the graph with this column on x axis it shows 17.07 00..... 17.07 04 i know that at end 00, 04 is the time but i wnt on x axis only time and the dstype of this column is datetime64ns. Can any one help me - Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data

the date is same but the time is changing. when i am plotting the graph with this column on x axis it shows 17.07 00..... 17.07 04 i know that at end 00, 04 is the time but i wnt on x axis only time and the dstype of this column is datetime64ns. Can any one help me

Python Pandas Tutorial (Part 10): Working with Dates and Time Series Data
2020年03月18日
00:35:20 - 00:35:41
when she talks with me xdd - Python Pandas Tutorial (Part 9): Cleaning Data - Casting Datatypes and Handling Missing Values

when she talks with me xdd

Python Pandas Tutorial (Part 9): Cleaning Data - Casting Datatypes and Handling Missing Values
2020年02月24日
00:07:20 - 00:31:54
we can use    df.replace(['NA', 'Missing'], np.nan, inplace=True)     instead - Python Pandas Tutorial (Part 9): Cleaning Data - Casting Datatypes and Handling Missing Values

we can use df.replace(['NA', 'Missing'], np.nan, inplace=True) instead

Python Pandas Tutorial (Part 9): Cleaning Data - Casting Datatypes and Handling Missing Values
2020年02月24日
00:11:36 - 00:31:54
watch from  time stamp, Thank me later XD - Python Pandas Tutorial (Part 9): Cleaning Data - Casting Datatypes and Handling Missing Values

watch from time stamp, Thank me later XD

Python Pandas Tutorial (Part 9): Cleaning Data - Casting Datatypes and Handling Missing Values
2020年02月24日
00:17:00 - 00:31:54
Question @.So he's saying you can't convert a Nonetype to an int but you can convert a Nonetype to a float? I'm confused here. Can someone please clear this up for me? I didn't really understand Corey's explanation. - Python Pandas Tutorial (Part 9): Cleaning Data - Casting Datatypes and Handling Missing Values

Question @.So he's saying you can't convert a Nonetype to an int but you can convert a Nonetype to a float? I'm confused here. Can someone please clear this up for me? I didn't really understand Corey's explanation.

Python Pandas Tutorial (Part 9): Cleaning Data - Casting Datatypes and Handling Missing Values
2020年02月24日
00:17:51 - 00:31:54
I mean if you're coding for more than 50 years, you probably just started as soon as computers fucking came out lol😂😂😂 - Python Pandas Tutorial (Part 9): Cleaning Data - Casting Datatypes and Handling Missing Values

I mean if you're coding for more than 50 years, you probably just started as soon as computers fucking came out lol😂😂😂

Python Pandas Tutorial (Part 9): Cleaning Data - Casting Datatypes and Handling Missing Values
2020年02月24日
00:26:03 - 00:31:54
In  of the video. For a one liner code. df['YearsCode'].replace(['Less than 1 year','More than 50 years'],[0,51]), inplace=True). Correct me if I'm wrong I'm new to Python. But great video again Corey! Hats off! - Python Pandas Tutorial (Part 9): Cleaning Data - Casting Datatypes and Handling Missing Values

In of the video. For a one liner code. df['YearsCode'].replace(['Less than 1 year','More than 50 years'],[0,51]), inplace=True). Correct me if I'm wrong I'm new to Python. But great video again Corey! Hats off!

Python Pandas Tutorial (Part 9): Cleaning Data - Casting Datatypes and Handling Missing Values
2020年02月24日
00:27:28 - 00:31:54
Intro: - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

Intro:

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:00:00 - 00:00:56
Recap: - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

Recap:

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:00:56 - 00:01:16
Basic Aggregate Functions:  (`df['col'].mean()`, `df['col'].median()`, `df['col'].mode()`, `df['col'].describe()`, `df.describe()`)- `describe` gives count (# non-NaN rows), mean, std, min, max, and 25%, 50%, and 75% quantiles - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

Basic Aggregate Functions: (`df['col'].mean()`, `df['col'].median()`, `df['col'].mode()`, `df['col'].describe()`, `df.describe()`)- `describe` gives count (# non-NaN rows), mean, std, min, max, and 25%, 50%, and 75% quantiles

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:01:16 - 00:12:00
Aggregate Column - - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

Aggregate Column -

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:02:00 - 00:03:55
median function - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

median function

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:03:10 - 00:05:00
Aggregate DataFrame - - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

Aggregate DataFrame -

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:03:55 - 00:07:51
describe function - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

describe function

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:05:00 - 00:07:20
count() - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

count()

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:07:20 - 00:08:05
Value Counts - - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

Value Counts -

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:07:51 - 00:12:30
value_counts() - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

value_counts()

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:08:05 - 00:12:51
if you have to do that to a specific country e.g. UK, how many people hobyist from UK and how many are not, how do you do that? - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

if you have to do that to a specific country e.g. UK, how many people hobyist from UK and how many are not, how do you do that?

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:09:08 - 00:49:06
Counts by Percentage:  (`df['col'].value_counts(normalize=True)`) - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

Counts by Percentage: (`df['col'].value_counts(normalize=True)`)

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:12:00 - 00:12:32
value count in % - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

value count in %

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:12:05 - 00:49:06
Grouping - - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

Grouping -

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:12:30 - 00:26:00
Intro to Groupby:- split object, apply function, combine results - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

Intro to Groupby:- split object, apply function, combine results

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:12:32 - 00:13:38
grouping the data - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

grouping the data

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:12:51 - 00:14:39
Split:df.groupby(['col'])df.get_group(['col_val']) - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

Split:df.groupby(['col'])df.get_group(['col_val'])

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:13:38 - 00:18:23
groupby() function - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

groupby() function

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:14:39 - 00:16:07
get_group(), grabbing a specific group by name - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

get_group(), grabbing a specific group by name

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:16:07 - 00:17:30
doing same by using the filters - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

doing same by using the filters

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:17:30 - 00:18:40
Apply Function & Combine:.agg(['mean', 'median']) - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

Apply Function & Combine:.agg(['mean', 'median'])

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:18:23 - 00:27:02
using value_counts on filters - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

using value_counts on filters

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:18:40 - 00:20:20
at , using .loc u got 20,00 rows and using group by u got 9,000 rows, how?? - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

at , using .loc u got 20,00 rows and using group by u got 9,000 rows, how??

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:19:00 - 00:49:06
Small note: at , the more correct syntax would be to select your column within the .loc method: df.loc[filt, 'SocialMedia'].value_counts(). - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

Small note: at , the more correct syntax would be to select your column within the .loc method: df.loc[filt, 'SocialMedia'].value_counts().

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:19:06 - 00:49:06
@ How are you able to put the two brackets side-by-side in the line: df.loc[filt]['socialmedia'].value_counts()I dont get why it works with df.loc, but when I tried to set a variable "group" to the groupby function, it doesnt work? - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

@ How are you able to put the two brackets side-by-side in the line: df.loc[filt]['socialmedia'].value_counts()I dont get why it works with df.loc, but when I tried to set a variable "group" to the groupby function, it doesnt work?

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:19:15 - 00:49:06
value_counts() for groups - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

value_counts() for groups

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:20:20 - 00:21:49
@ How would return just the top row for each country?I want it to look something like this...Country           Social MediaAfghanistan    Facebook         15Zimbabwe       Facebook          3 - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

@ How would return just the top row for each country?I want it to look something like this...Country Social MediaAfghanistan Facebook 15Zimbabwe Facebook 3

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:21:46 - 00:49:06
using loc to find for one country - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

using loc to find for one country

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:21:49 - 00:23:40
Corey, at  the groupby object forms a series with multindex. I'll try later to use pivot_table() to make index the countries and the columns representing different social apps. Although it won't be tidy data, I think it will be useful to explore it. - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

Corey, at the groupby object forms a series with multindex. I'll try later to use pivot_table() to make index the countries and the columns representing different social apps. Although it won't be tidy data, I think it will be useful to explore it.

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:21:50 - 00:49:06
percentage by using normalize - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

percentage by using normalize

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:23:40 - 00:25:00
median by country group - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

median by country group

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:25:00 - 00:26:13
Multiple Aggregates on Group - - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

Multiple Aggregates on Group -

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:26:00 - 00:27:20
agg function for multiple functions - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

agg function for multiple functions

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:26:13 - 00:27:30
Gotchas:.apply() on SeriesGroup - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

Gotchas:.apply() on SeriesGroup

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:27:02 - 00:33:36
People Who Know Python By Country - - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

People Who Know Python By Country -

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:27:20 - 00:34:20
using filtering to get python users by country - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

using filtering to get python users by country

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:27:30 - 00:30:20
At  in the video, would the following statement be more accurate as we want to know how many people know Python in Indiafilt = df['Country']=='India'df[filt]['LanguageWorkedWith'].str.contains('Python').count() - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

At in the video, would the following statement be more accurate as we want to know how many people know Python in Indiafilt = df['Country']=='India'df[filt]['LanguageWorkedWith'].str.contains('Python').count()

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:30:07 - 00:49:06
error on using same approach for groups - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

error on using same approach for groups

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:30:20 - 00:31:40
apply method to run that on group - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

apply method to run that on group

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:31:40 - 00:35:40
Hi Corey. in the group by method in , in the apply() method, the x in the lambda represent the series? in the apply method in the previous lectures isn't the apply method use in every cell/value in a series? Not in the series itself just like the 32:58? I'm new to python.  Thanks! - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

Hi Corey. in the group by method in , in the apply() method, the x in the lambda represent the series? in the apply method in the previous lectures isn't the apply method use in every cell/value in a series? Not in the series itself just like the 32:58? I'm new to python. Thanks!

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:32:58 - 00:49:06
Very interesting tutorial. Thumb up! Particularly at  !! - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

Very interesting tutorial. Thumb up! Particularly at !!

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:33:30 - 00:49:06
Real-World Problem (Calculation from Several Groups):- What percentage of people from each country know Python?country_respondents = df['Country'].value_counts()country_uses_python = country_grp['LanguageWorkedWith'].apply(lambda x: x.str.contains('Python').sum())result = pd.concat([country_respondents, country_uses_python], axis='columns')result.rename(columns={'Country': 'NumRespondents', 'LanguageWorkedWith': 'NumKnowsPython'})result['PctKnowsPython'] = country_uses_python / country_uses_python * 100result.sort_values(by='PctKnowsPython', ascending=False)result.loc['Japan'] - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

Real-World Problem (Calculation from Several Groups):- What percentage of people from each country know Python?country_respondents = df['Country'].value_counts()country_uses_python = country_grp['LanguageWorkedWith'].apply(lambda x: x.str.contains('Python').sum())result = pd.concat([country_respondents, country_uses_python], axis='columns')result.rename(columns={'Country': 'NumRespondents', 'LanguageWorkedWith': 'NumKnowsPython'})result['PctKnowsPython'] = country_uses_python / country_uses_python * 100result.sort_values(by='PctKnowsPython', ascending=False)result.loc['Japan']

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:33:36 - 00:45:23
#Ques at , what percentage of people from each country know Python? - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

#Ques at , what percentage of people from each country know Python?

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:34:20 - 00:49:06
Practice Question - - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

Practice Question -

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:34:20 - 00:37:27
Possible solutions for the question atcountry_grp['LanguageWorkedWith'].apply(lambda series: series.str.contains('Python').sum()/len(series)) - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

Possible solutions for the question atcountry_grp['LanguageWorkedWith'].apply(lambda series: series.str.contains('Python').sum()/len(series))

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:34:28 - 00:49:06
try this as the solution to question asked by respected Corey sir at  :l_countries = pd.unique(csv.dropna()['Country'])a = [(i, ((gbo.get_group(i)['LanguageWorkedWith'].str.contains('Python').sum()) / (gbo.get_group(i)['LanguageWorkedWith'].count()) * 100)) for i in l_countries] - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

try this as the solution to question asked by respected Corey sir at :l_countries = pd.unique(csv.dropna()['Country'])a = [(i, ((gbo.get_group(i)['LanguageWorkedWith'].str.contains('Python').sum()) / (gbo.get_group(i)['LanguageWorkedWith'].count()) * 100)) for i in l_countries]

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:34:35 - 00:49:06
I was just wondering if on  you could have just modified the lambda expression so it could just do all the calculations in place like so:country_grp["LanguageWorkedWith"].apply(lambda country_ser: (country_ser.str.contains("Python").sum()*/country_ser.value_counts().sum())*100)What I tried to do was to count the sum of total respondents for each country and do all the necessary calculations inside the lambda,  and, though the result that I got were similar to yours, they still were slightly different. - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

I was just wondering if on you could have just modified the lambda expression so it could just do all the calculations in place like so:country_grp["LanguageWorkedWith"].apply(lambda country_ser: (country_ser.str.contains("Python").sum()*/country_ser.value_counts().sum())*100)What I tried to do was to count the sum of total respondents for each country and do all the necessary calculations inside the lambda, and, though the result that I got were similar to yours, they still were slightly different.

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:35:38 - 00:49:06
At  since you want to get the percentage of boolean values that are 1 you can pretty much just replace .sum() with .mean(). It's sum/length. - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

At since you want to get the percentage of boolean values that are 1 you can pretty much just replace .sum() with .mean(). It's sum/length.

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:35:40 - 00:49:06
finding the percentage of people using python in each country(group) - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

finding the percentage of people using python in each country(group)

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:35:40 - 00:37:40
. I don’t have the data or code to run to see if this would work right now, but at first glance I’d run:.apply(lambda x: x.str.contains(‘Python’).mean()) - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

. I don’t have the data or code to run to see if this would work right now, but at first glance I’d run:.apply(lambda x: x.str.contains(‘Python’).mean())

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:35:55 - 00:49:06
I just wanted to share something regarding LanguagesHaveWorked grouped by Country (on ). I think the below code is rather simpler if we just wanna look at the percentages only, but I don't how reliable this method might be - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

I just wanted to share something regarding LanguagesHaveWorked grouped by Country (on ). I think the below code is rather simpler if we just wanna look at the percentages only, but I don't how reliable this method might be

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:36:00 - 00:49:06
() I added just a short method to get percentage of python users.country_grp['LanguageWorkedWith'].apply(lambda x: x.str.contains('Python').sum())->country_grp['LanguageWorkedWith'].apply(lambda x: (x.str.contains('Python').sum())/x.count()) - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

() I added just a short method to get percentage of python users.country_grp['LanguageWorkedWith'].apply(lambda x: x.str.contains('Python').sum())->country_grp['LanguageWorkedWith'].apply(lambda x: (x.str.contains('Python').sum())/x.count())

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:36:18 - 00:49:06
Concat Series - - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

Concat Series -

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:37:27 - 00:49:06
using concat for combining series in a dataframe - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

using concat for combining series in a dataframe

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:37:40 - 00:45:30
-  U S A ! U S A ! U S A ! - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

- U S A ! U S A ! U S A !

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:44:30 - 00:49:06
Outro: - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

Outro:

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:45:23 - 00:49:06
adding percentage column - Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

adding percentage column

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data
2020年02月14日
00:45:30 - 00:49:06